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Abstract
This paper consists of two important theoretical observations on the interplay between l = 2
condensates; d-density wave (ddw), electronic nematic and d-wave superconducting states.
(1) There is SO(4) invariance at a transition between the nematic and d-wave superconducting
states. The nematic and d-wave pairing operators can be rotated into each other by pseudospin
SU(2) generators, which are s-wave pairing and electron density operators. The difference
between the current work and the previous O(4) symmetry at a transition between the ddw and
d-wave superconducting states (Nayak 2000 Phys. Rev. B 62 R6135) is presented. (2) The
nematic and ddw operators transform into each other under a unitary transformation. Thus,
when a Hamiltonian is invariant under such a transformation, the two states are exactly
degenerate. The competition between the nematic and ddw states in the presence of a
degeneracy breaking term is discussed.

1. Introduction

Motivated by the discovery of exotic ordered states in strongly
correlated materials, the interplay between different order
parameters has been of great interest. In particular, competition
and/or cooperation of the d-wave superconducting state and
other nearby ordered states in high temperature cuprates have
been subjects of intensive theoretical research activities. A
few examples of nearby ordered states proposed in high
temperature cuprates include the Néel antiferromagnet [2, 3],
the ddw state (also called the staggered flux phase) [4–6] and
the electronic nematic phase [7–11].

Among these, the antiferromagnetic state is an s-wave
particle–hole condensate, while the ddw, electronic nematic
and d-wave superconducting states share a common d-wave
feature; the d-wave superconducting state is formed by a
condensation of particle–particle pairs of l = 2 relative angular
momentum, while the ddw and electronic nematic states are
formed by condensations of particle–hole pairs of l = 2
relative angular momentum, but at different wavevectors.

In this paper, we study whether there are intimate relations
between these l = 2 condensates, which will shed light on our
understanding of the competition and/or cooperation between
them. The d-wave superconducting, ddw and electronic
nematic states are represented by their order parameters which

capture the characteristic broken symmetries of each state.
The well-known d-wave superconducting order parameter is
written as

〈�+
d−sc〉 = − 1√

2

∑

k

d(k)〈c†
k↑c†

−k↓〉. (1)

On the other hand, the ddw and electronic nematic order
parameters are given by

〈�ddw〉 = i

2

∑

kσ

d(k)〈c†
kσ ck+Qσ 〉,

〈�nem〉 = 1
2

∑

kσ

d(k)〈c†
kσ ckσ 〉,

(2)

where d(k) = cos (kx)− cos (ky), σ represents up- and down-
spin, and Q = (π, π). We set a, the lattice constant of a
two-dimensional square lattice, to be unity. Since the ddw
order parameter is a complex value defined at the wavevector
Q, it breaks translational, time-reversal and π/2-rotational
symmetries, while the nematic state breaks only π/2-rotational
symmetry.

It was shown that there is O(4) invariance at a transition
between the d-wave superconducting and ddw states [1, 12].
Below we show that there is SO(4) invariance at a transition
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between the nematic state and the d-wave superconductor,
where the pseudospin SU(2) generators are s-wave pairing
and density operators; the spin SU(2) and pseudospin SU(2)
forms SO(4). We discuss the difference between our finding
and the previous O(4) symmetry at a transition between the
ddw and d-wave superconducting states. We then present
a relation between the nematic and ddw states, and its
competition between them.

2. Pseudospin SU(2) generators

To understand the relation between the nematic and d-wave
superconducting states, let us first review a similar relation
found between the ddw and the d-wave superconductor, where
the pseudospin generators are η pairing operators. The
pseudospin η operators was first discussed by Yang in the
Hubbard model [13]. η+, η− = (η+)† and ηz are defined as
follows:

η+ =
∑

k

c†
k↑c†

−k+Q↓,

ηz =
∑

k

(
c†

k↑ck↑ + c†
k+Q↓ck+Q↓ − 1

)
.

(3)

Note that these operators form an SU(2) algebra. It was
shown that the η-pairing state is an eigenstate of the Hubbard
Hamiltonian. It is interesting to note that the η-pairing state
is a finite center-of-mass momentum pairing state (FFLO)
of s-wave superconductors with momentum Q = (π, π).
It was later proved that the η-pairing state with a finite
Zeeman field can be mapped to the Nagaoka ferromagnetic
state with a finite doping by a particle–hole transformation,
which simultaneously maps the negative-U Hubbard model
to the positive-U Hubbard model, respectively [14]. It was
also shown that the on-site s-wave pairing operator and charge
density wave operator can be rotated into each other by the
pseudospin SU(2) generators, which is summarized by the
following relation [15]:

[η+, ρQ] = √
2�̃+

ssc, (4)

where ρQ = 1
2

∑
kσ c†

kσck+Qσ , �̃+
ssc = − 1√

2

∑
k c†

k↑c†
−k↓, and

�̃−
ssc = −(�̃+

ssc)
†.

Following Yang, the pseudospin SU(2) symmetry was
adapted to a critical point between the d-wave superconductor
and the ddw state [1]3. The generators, iη+, iη−, ηz , were
defined to have the same forms of η. However, there is a
difference: the factor of i in η± was introduced due to the
factor i in the ddw operator. The rotation between the ddw
and d-wave superconducting operators can be captured by the
following commutation relation:

[iη+,�ddw] = √
2�+

d−sc, (5)

where �ddw = i
2

∑
kσ d(k)c†

k+Qσckσ , �+
d−sc = − 1√

2

∑
k d(k)

c†
k↑c†

−k↓ and �−
d−sc = −(�+

d−sc)
†. O(4) invariance at a

transition between the ddw and d-wave superconducting state
was further discussed in [1].
3 Since the ddw state breaks time-reversal symmetry, the symmetry at a
transition between the ddw and d-wave superconducting state is SU(2) ×
SU(2)× Z2.

3. Rotation between the nematic and d-wave
superconducting operators

It is straightforward to find a similar relation between the
nematic and d-wave pairing operators, where the pseudospin
SU(2) generators are

L+ ≡ �+
s−sc =

∑

k

c†
k↑c†

−k↓,

L− ≡ �−
s−sc = (�+

s−sc)
†,

L0 ≡ �z = 1
2

∑

kσ

c†
kσckσ − N,

(6)

where N is the total number of lattice sites. Note that the
operators �+

d−sc(m = 1), �−
d−sc(m = −1) and �nem(m = 0)

form an irreducible tensor of rank l = 1 under the SU(2)
algebra, as follows:

[L±,�m] = √
l(l + 1)− m(m ± 1)�m±1,

[L0,�m] = m�m,
(7)

where l = 1. Therefore, the nematic and d-wave
superconducting operators can be rotated into each other by
the pseudospin generators:

[�+
s−sc,�nem] = √

2�+
d−sc. (8)

The above equation implies that there is SO(4)
invariance at a transition between the nematic and d-wave
superconducting (nematic-dsc) states. However, a small
symmetry breaking term can be present, which will favor one
state over the other. For example, it is possible that potential
terms such as −g(�2

nem −�2
d−sc) can be present, which favors

the nematic phase (the d-wave superconductor) for g > 0 (g <
0). Then, a different symmetry breaking term such as a finite
chemical potential can lead to a transition from the nematic
state to the d-wave superconducting state, so there is SO(4)
symmetry at a bi-critical point.

Similar scenarios were proposed in the previous study of
the ddw and d-wave superconducting (ddw–dsc) transition,
as well as in SO(5) theory of antiferromagnetic and d-wave
superconducting states. However, there is a crucial difference
between the ddw–dsc and nematic-dsc transitions. In the
case of the O(4) symmetry at a transition between the ddw
and d-wave superconducting state, the chemical potential is a
symmetry breaking term. Since the chemical potential couples
to one of the SU(2) generators (∝ μηz), a finite chemical
potential favors the d-wave superconducting state over the ddw
state. Therefore, if an effective interaction is O(4) invariant,
the system equally favors the ddw and d-wave superconducting
states at the half-filling with a tight-binding dispersion. On the
other hand, if an effective interaction favors the ddw state at
the half-filling, there is a first-order transition from the ddw
state to the d-wave superconducting state at a finite chemical
potential, which is like a spin-flop transition. Note that the
nearest-neighbor hopping term is O(4)-invariant. In other
words, the nearest-neighbor hopping term commutes with the
η pairing operator which results from εk = −εk+Q, where
εk = −2t (cos kxa + cos kya).
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The nearest-neighbor hopping term has a quite different
effect on the nematic and d-wave superconducting transition.
Since the pseudospin generator is an s-wave pairing operator,
the nearest-neighbor hopping term is a symmetry breaking
term, in addition to the chemical potential term. The nearest-
neighbor hopping term can be written as

H0 =
∑

k

εkψ
ασ†
k τ

β

3αψβσk, (9)

where ψk is the vector field with four components, α(β)
represents pseudospin index, τ is a Pauli matrix for pseudospin
and σ denotes spin index. Since the electron field forms a
doublet under the pseudospin SU(2) in addition to the spin
SU(2), ψk is defined as

ψk =
(

ck↑, ck↓, c†
−k↓, c†

−k↑
)
. (10)

Therefore, when an interaction equally favors the nematic
and d-wave superconducting state, the d-wave superconducting
state wins over the nematic due to the presence of a nearest-
neighbor kinetic term even at μ = 0. An introduction of the
chemical potential further favors the d-wave superconducting
state, because again it couples to the �z operator. Therefore,
the realization of the nematic state in a realistic system requires
a potential term which strongly favors the nematic state over
the d-wave superconducting state in order to compensate for
the effect of a nearest-neighbor hopping term. The coexistence
of nematic and d-wave superconducting phases has been found
by a mean-field theory in [16], where a strong nematic-favoring
interaction was used. This is consistent with our finding that
the nearest-neighbor hopping term is a pseudospin symmetry
breaking term, and a strong nematic interaction is required to
compensate for its effect.

4. Unitary transformation between the nematic and
the ddw operators

Now one may ask about a relation between two different
rotations: equations (7) and (5). We will show below that these
two equations transform from one to the other by a unitary
transformation. Therefore, if a Hamiltonian is invariant under
such a transformation, two states (nematic and ddw) are exactly
degenerate.

We consider the following unitary transformation:

U †c†
l U = ei(−1)l π4 c†

l , (11)

where l denotes a lattice site. U = ei π4 (NA−NB) where NA and
NB are the total number operators for sublattice A and B sites.
Under the above transformation, it is straightforward to show
that the ddw and nematic state can be smoothly rotated:

U †�ddwU = �nem. (12)

What is the significance of the above relation between the
operators? The importance of the relation is that, if and only if
a Hamiltonian of interest is invariant under the transformation,
i.e. U † HU = H , then

〈φ1|H |φ1〉 = 〈φ2|H |φ2〉
〈φ1|�ddw|φ1〉 = 〈φ2|�nem|φ2〉,

(13)
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Figure 1. The ddw and nematic order parameters as a function of
chemical potential μ and the effective interaction F . We set t = 1,
t ′ = −0.4t , and t ′′ = 0. The red and blue regions are the ddw and
nematic phases, respectively.

(This figure is in colour only in the electronic version)

where |φ1〉 and |φ2〉 are smoothly connected by a rotation,
U |φ1〉 = |φ2〉, and exactly degenerate. Therefore, the ddw
and nematic states are exactly degenerate. What breaks this
degeneracy?

Since the unitary transformation involves the sublattices of
A and B, any types of density–density or spin–spin interactions
do not break the degeneracy. However, the kinetic term
does. The most important and relevant term which breaks
the degeneracy is the nearest-neighbor hopping term which
is not invariant under this transformation4. Therefore, one
of the states always wins over the other due to the presence
of a non-zero nearest-neighbor hopping integral in realistic
systems. While the next-nearest (t ′) and next-next-nearest (t ′′)
hopping terms, and chemical potential, are invariant under the
unitary transformation, the effect of t on selecting a state can
be changed in the presence of these terms. The energetic
difference between the ddw and nematic states is presented in
figure 1 using mean-field theory for a given set of hopping
parameters and an interaction F which equally favors the
nematic and ddw states. Here we set t = 1, t ′ = −0.4t and
t ′′ = 0, and show how the state is stabilized as a function of
the chemical potential μ and the effective interaction F .

As is shown, the ddw state is favorable at relatively
low doping, while the nematic state wins at higher doping.
The origin of the phase transition is related to a change in
the density of states, since the ddw state is favorable near
doping with the nesting εk = −εk+Q, while the nematic
state is favorable near doping with a van Hove singularity.
A reasonable amount of t ′ moves the nematic state to higher
doping by shifting a van Hove singularity, which is a way to
avoid the competition with the ddw state. The two phases
are separated by the first-order phase transition; this occurs
around μ = −1.4 which corresponds to the hole doping of
0.2 and is almost independent of the strength of the effective
interaction F .

4 At a limit of t → 0, the ddw order parameter is ill defined, since
the ddw order parameter is defined via a current on each link between the
nearest-neighbor bonds. Therefore, the ddw order parameter cannot represent
translational and time-reversal symmetries, and it is nothing but a different
gauge choice of the nematic state.

3
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5. Summary and discussion

Finite angular momentum condensates have been studied
to understand various exotic phases in strongly correlated
systems. In particular, condensates of particle–particle or
particle–hole pairs of l = 2 relative angular momentum have
been proposed in the context of high Tc cuprates. We studied
the relations between different l = 2 condensates: the d-wave
superconducting, ddw and electronic nematic states proposed
as relevant phases of underdoped cuprates.

We showed that there is SO(4) invariance at a transition
between the electronic nematic and d-wave superconducting
state. The pseudospin SU(2) generators that rotate the
nematic to d-wave pairing operators are s-wave pairing and
electron density operators. The important difference between a
similar O(4) invariance at a transition between the ddw and
d-wave superconducting state transition is that the nearest-
neighbor hopping term is a symmetry breaking term, which
in turn always favors the d-wave superconducting state over
the nematic state even at μ = 0. A finite chemical potential
further favors the d-wave superconducting state.

We also found that the electronic nematic operator and
the ddw operator transform into each other under a unitary
transformation. Therefore, if Hamiltonians are invariant under
the unitary transformation, the ddw and nematic states are
exactly degenerate. The most important and relevant term
which breaks the degeneracy is the nearest-neighbor hopping
integral. Since the nearest-neighbor hopping is finite in
realistic materials of our interest, one of the two states is
always energetically lower than the other. While the chemical
potential term is invariant under the unitary transformation,
the role of t on its energetic selection changes as one changes
μ. We found that the ddw state is stabilized over the nematic
at lower chemical potential, while the nematic wins over the
ddw state for higher chemical potential within a mean-field
approximation, when the interactions equally favor these two
states.

A further study on the competition between the nematic
and d-wave superconducting states may lead us to understand
a series of anisotropic scattering patterns observed in
YBa2Cu3O7−δ [17–21]. The competition between the ddw,
nematic and d-wave superconducting states beyond the mean-
field theory is also an important issue, which we will address
in the near future [22].
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